
Scientific article

Characteristics and Comparison of Global State Management Tools in
React applications

Sanja Brekalo1, Klaudio Pap2, Florijan Kos1

1 Međimurje University of Applied Sciences in Čakovec; Bana Josipa Jelačića 22a, 40000
Čakovec, Croatia
2University of Zagreb, Faculty of Graphic Arts; Getaldićeva 2, 10000 Zagreb, Croatia
Correspondence: sanja.brekalo@gmail.com

This paper analyses and compares four tools for global state management in React
applications, namely Context API, Zustand, Redux and MobX. The aim of the com-
parison was to define the advantages and limitations of each tool in different applica-
tion scenarios. The Context API is a built-in tool for managing global application state
that solves the problem of passing props through components – prop drilling. Other
analysed tools need to be added separately to the project, and they were created as a
solution to the limitations of the Context API. The results showed that Context API
is best suited for smaller and medium-complex projects, Zustand is optimized for
all project sizes, while Redux and MobX are more applicable for large and complex
applications with complex global state. The Context API can become limiting in com-
plex applications due to performance issues, context losses, or the lack of a solution
to directly prevent the Zombie Child problem. Other tested tools have built-in solu-
tions to the mentioned problems. Zustand has proven to be a comprehensive solution
with its simple code base applicable to different sizes of applications. The advantage
of Redux is its Flux architecture, which increases the boilerplate code, but also makes
application development suitable for large teams and projects with high demands for
predictability and strictly defined state management. MobX offers a flexible and reac-
tive approach, which simplifies working with complex states, but in certain cases it
can be less predictable compared to Redux. In conclusion, this paper contributes to the
understanding of the key features of state management tools and offers guidelines for
their selection, enabling developers and development teams to make informed deci-
sions about tool selection based on technical and project requirements.

Abstract:

React.js is a popular open-source JavaScript
library created by Facebook. It is used for
building user interfaces for websites and native
applications that run in a Node.js environment.
In React, applications are developed using
components that construct the interface. The

23

Keywords:
React, Context API, MobX, Zustand, Redux

1. Introduction
division of an application into components
follows the principles of code reusability,
with each component serving as a building
block of the application. Each component is
responsible for rendering a part of the HTML
code for the interface it builds. React uses

JavaScript to construct the user interface
and for asynchronous communication with
the server. Asynchronous communication
is used to fetch data from API endpoints,
read from a database, or execute code on the
server side of the application [1, 2]. As React
applications grow in complexity, refactoring
becomes an essential practice to improve
maintainability and scalability. Research
shows that developers frequently restructure
component hierarchies and optimize state
management to enhance code quality and
long-term maintainability [3].
React changes the approach to web
development by enabling the creation of
Single Page Applications (SPA). A Single
Page Application loads only one HTML
document and updates parts of the page using
JavaScript, without the need to reload the
entire page from the server when navigating
through links or other interactive elements.
All the necessary code, including HTML,
JavaScript, and CSS, is downloaded during
the initial page load. This approach makes
the page more reactive and similar to a
desktop application, while also improving
performance [4]. Understanding the
hierarchy of React components is essential
for efficient state management, as it helps
developers analyze component relationships
and data flow. Visualization tools like React-
bratus have been proposed to aid developers
in navigating component structures and
identifying architectural inefficiencies [5].
React employs DOM manipulation techniques
that enable faster rendering of dynamic web
applications. It uses a virtual DOM, which
is essentially a copy of the browser’s real
DOM stored in memory, to identify the parts
of the page that need to be updated after an
event occurs. React maintains two versions
of the virtual DOM for comparison: the new
DOM created after the event is executed in
the application, and the old DOM currently
displayed in the browser. React compares
these two versions of the virtual DOM
in memory, a process that is faster than

working directly with the DOM displayed
in the browser. This process is known as
reconciliation. React identifies the differences
between the two versions of the virtual DOM,
and if changes are detected in the new virtual
DOM, the real DOM is updated only in the
places where those changes occurred. This
approach enables more efficient and faster
updates to the user interface, giving React
applications the feel of mobile apps [6, 7].
In React applications, rendering parts of a page
and creating a new virtual DOM is possible
only when the component’s properties (props)
or state changes. Props are values passed
to a component from its parent component,
and changes to their values trigger the re-
rendering of the component. Components in
an application have hierarchical relationships.
The root component of an application
includes all other components as children and
descendants. Components receive external
data via props from parent components.
React’s data flow between components is one-
directional (from parent to child only). Props
are read-only and cannot be modified by the
component that receives them. State, on the
other hand, allows components to manage
their own data. State data can be modified only
by the component that defines it and is private
(it cannot be directly accessed externally). A
state change can also be triggered by a child
component but only through methods defined
in the parent component [8]. In essence,
props are used for passing data, while state
is used for managing component’s data [9].
State changes typically occur based on user
input, event triggers, and similar interactions.
When the state changes, React is notified,
and the DOM is re-rendered—not the entire
DOM, only the components with the updated
state. Since the introduction of React Hooks ,
state can be used in both class and functional
components [10].
State management is a crucial concept
in modern application development,
particularly in React applications, where it
plays a key role in optimizing performance

24

Acta Graphica, 2025. (1) Scientific article

25

and enhancing the user experience. As the
complexity of an application grows, so does
the complexity of managing its state. In such
cases, it is advisable to use tools that simplify
state management, improve application
scalability, and facilitate maintenance. Poorly
structured React applications can accumulate
technical debt, making state management
more error-prone and harder to maintain.
Studies have identified common ‘code smells’
that arise in React-based web applications
due to suboptimal component design and
improper state handling [11]. There are
several tools focused on state management
that can be implemented in React projects.
When choosing among these tools, the
main challenge is assessing which tool will
provide optimal application performance
while maintaining ease of use. This research
focuses on identifying and specifying the
characteristics of individual tools to simplify
the selection of tools and approaches for state
management in React applications.
For the purposes of this research, four state
management tools were selected: Context
API, Zustand, Redux, and MobX. The
paper analyses their key features to provide
guidelines for selecting the most suitable tool
based on the specific needs of projects. The
study aims to answer the question: Which
state management tool offers the optimal
combination of performance, simplicity, and
flexibility for React applications of various
sizes and complexities? The goal is to explore
the characteristics of these tools through
comparison and define recommendations
for their optimal use in React projects. It
is assumed that each of the analysed state
management tools—Context API, Zustand,
Redux, and MobX—has specific advantages
and limitations, and their applicability depends
on the size, complexity, and requirements of
React applications. The goal is to explore the

characteristics of these tools and determine
their optimal use cases to enable the selection
of a tool that best balances performance,
simplicity, and scalability across different
projects.

1.1. Managing state in React
applications

1The Document Object Model (DOM) in a browser represents
the structure and content of a web document. DOM is a pro-
gramming interface for web documents.
2Hooks are a feature in React introduced in version 16.8,
which allow the use of state and other React functionalities
within functional components.

With React, the user interface cannot be
directly modified from the code and is updated
only by changing the state in response to user
input. Sometimes, it is necessary to update
the state of two components simultaneously.
To achieve this, the state is moved from the
components to their closest common parent
component and then passed down via props.
This process is known as “lifting state”.
Passing props from lifted state can become
challenging if a prop needs to be passed
through many components or if multiple
components require the same information
[12]. Figure 1 illustrates this scenario, where
props are passed through the hierarchy to
components that utilize the prop from the
lifted state.

 Figure 1. Prop drilling through the hierarchy

Context API, Zustand, Redux and MobX
enable lifting state and subscribing
components to the state, removing the need to
pass props through child components until it
reaches the one that needs it. This makes the
state accessible to any component in the tree
below without explicitly passing it through
props and thus eliminating the need to refresh
the entire tree of components, so the ones that
do not consume the props don’t need to be
changed. Refreshing components consumes

Acta Graphica, 2025. (1) Scientific article

26

significant time and device resources,
reducing unnecessary component updates
(caused by passing props) can significantly
improve performance. Today, many popular
state management libraries are available for
React projects. They all aim to improve state
management, but each focuses on one or
more specific areas. Therefore, it’s not about
choosing the best library for everything but
selecting the one that best suits the project’s
needs and characteristics.
Global state is used in applications to share
state and data that need to be accessible across
multiple components. This is particularly
useful in scenarios where different parts of
the application—or multiple components—
require the same data or state. Examples of
such use cases include:
	 • Tracking global application
information: Refers to global state that must be
accessible to various parts of the application,
such as a shopping cart in an e-commerce app
or the currently playing song in a music app.
	 • User authentication: Tracks user
authentication status to determine which
parts of the application are displayed and
what management rights the user has.
	 • Managing themes and visual
appearance: Enables toggling between light
and dark modes, changing fonts, and other
theme-related settings.
	 • Localization: Tracks the selected
language and localization settings.
	 • User preferences: Monitors user
settings such as notification status or other
preferences.
	 • Modal states: Manages the opening
and closing of modals across different parts
of the application.
	 • Managing API requests: Stores
data or loading statuses (e.g., loading or error
states) to display responses in multiple places
in the application.
	 • Breadcrumb navigation: Displays
breadcrumbs to help users navigate back to
previous pages.
	 •Step progress tracking: Tracks

progress through steps in an application (e.g.,
registration steps or the checkout process).

1.1.1. React Context API
React Context API was designed to simplify
working with state and eliminate the need
to pass props through the component tree
from higher-level components to lower-
level components where they are needed. By
using the Context API, state management is
simplified as it removes the need for prop
drilling, allowing components to directly
access the data they need from the state. This
makes sharing data across the component tree
easier and reduces the likelihood of errors
[13] .
In the Context API, a context is first created
using the createContext() method. A Provider
is then defined as a component that utilizes
the context, and it is set to wrap a parent
component of the tree section where the
context should be made available. The
Provider component contains a value property
that holds the data to be shared across
components. When the Provider’s value
changes, all descendants using the context are
re-rendered. A Consumer component enables
any descendant to use the context. In modern
React, the useContext hook is commonly used
instead of the Consumer component [14].

1.1.2.	 Zustand

Zustand is a library developed by the creators
of the popular Immer library. Zustand is an
external library built on Context API and
hooks. It stands out for its simplicity, featuring
a minimal API that makes it easy to learn and
use, while requiring very little boilerplate code
for setup. Based on React Hooks, Zustand
integrates naturally into modern React
applications and offers excellent TypeScript
support with precise type inference. Zustand
supports middleware and enables easy
integration with middleware functions
for additional functionalities through its
zustand/middleware library. Some supported
middleware includes devtools, which logs

Acta Graphica, 2025. (1) Scientific article

27

state changes and helps track state updates, as
well as integration with the Redux DevTools
browser extension for monitoring application
state and enabling Time-Travel Debugging .
Another middleware, persist, allows state to be
stored in local storage (e.g., LocalStorage) or
other storage systems. Zustand also supports
creating custom middleware for specific
application needs, such as state protection or
action customization. Zustand automatically
handles state updates, which can be partial and
mutable, as well as subscriptions and efficient
re-rendering of components. It uses selector
functions, which allow precise retrieval of
specific parts of the state within components
rather than accessing the entire state.
Selectors optimize performance by enabling
components to subscribe only to specific parts
of the state, avoiding unnecessary re-renders
when other parts of the state change [15, 16].

which enables a predictable and consistent
flow of data throughout the application. Flux
relies on a unidirectional data flow, meaning
data moves in a single direction without
feedback loops. The main components of
Flux architecture include:
	 • Actions - operations that trigger
changes in the application and are created by
application events using action creators, which
are functions that return action objects.
	 • Dispatcher - manages the actions by
forwarding them to the appropriate reducer.
	 • Reducers - are pure functions that
take the current state and an action as input
and return an updated state. In Redux, reducers
create a new copy of the state rather than
modifying the existing one. They must not
produce side effects or perform asynchronous
tasks, like accessing a database or fetching
API data.
	 • Stores - store the application state,
while Consumers are the components that use
the stored data [17].
To handle asynchronous operations in Redux,
middleware tools like Redux Thunk or Redux
Saga are commonly used. These tools allow
asynchronous code to run outside reducers,
and once the data is retrieved or processed,
they dispatch actions to inform reducers
about state changes. This separation ensures
that reducers remain pure functions.
Redux is typically used in applications with
many state variables shared across different
components, where state changes frequently
and the logic for updating the state is complex.
Redux is especially suitable for medium to
large applications and for teams of developers
[18].

Redux is an external library for managing and
updating the state of an application, which
can be used not only with React but also
with other JavaScript frameworks. It defines
rules that ensure the centralized state store
can be updated only in a predictable way.
Compared to Context API, Redux requires
more boilerplate code and has a steeper
learning curve. However, the introduction of
Redux Toolkit—a simpler and easier version
of Redux—has significantly reduced this
complexity. The Redux library has the most
established ecosystem and provides a wide
variety of middleware. It also offers features
like Time-Travel Debugging with Redux
DevTools and tools for handling side effects.
It is often considered more suitable for larger
applications with complex state management
needs.
React is based on the Flux architecture,

1.1.3. Redux and Redux Toolkit

3Time-Travel Debugging is a technique that allows navigating
through the history of state changes in an application. Using
Redux DevTools, developers can “travel through time” by
rewinding or replaying state changes, returning the applica-
tion to previous states. This is highly useful for debugging, as
it enables a detailed review of every step the application took
to reach its current state.

1.1.4. MobX

MobX is a state management library that
can simplify state management, improve
performance, and enhance the scalability of
React applications. The key concepts in MobX
relate to the application state, where parts of
the state are defined as observables—variables
that automatically generate derivations,

Acta Graphica, 2025. (1) Scientific article

28

or computed values, based on the state.
Other important concepts in MobX include
reactions, which are functions wrapped in
the autorun() function and automatically
triggered when changes occur in observable
values, and actions, which modify the
state. Derivations are values automatically
calculated from the application’s state.
Reactions are similar to derivations, but the
main difference is that they do not produce
values; instead, they automatically perform
a specific task. Actions modify the state and
ensure that derivations and reactions are
automatically processed after changes. To
enable the automatic execution of derivations
and reactions, state variables must be defined
as observables. MobX integrates well with
existing React Hooks code, allowing MobX
state to be combined with Hooks state [19-
22].

the importance of identifying structural
weaknesses in React applications to improve
maintainability and prevent common pitfalls
associated with large-scale state management
[11]. Apart from managing client-side
state, real-world applications often require
synchronization between the client and server.
Research has identified frameworks that help
address this challenge by ensuring consistency
between UI state and backend data [23].
State management decisions often influence
how frequently a React application requires
refactoring. Recent studies have identified
common patterns in React refactoring, such
as restructuring component hierarchies
and optimizing state flow to improve code
sustainability [3].
The analysis was based on data collected from
technical documentation and usage guides
for each tool. Practical implementations of
each tool were also conducted in a simulated
development environment, focusing on real-
world use cases. As a result of the research, a
tabular analysis was created, highlighting the
advantages and disadvantages of each tool.
The limitation of this study is in the fact
that it does not compare all available state
management tools but focuses only on the
most used and popular ones. Additionally,
performance was not empirically tested on
large-scale projects but analysed through
simpler examples and documentation. Future
research should expand the analysis to include
less popular tools and incorporate empirical
performance testing in large and complex
projects to provide additional insights into
their scalability and efficiency.

A qualitative research approach was
applied, enabling a detailed analysis of the
features of state management tools in React
applications. Tools - Context API, Zustand,
Redux and MobX - were selected based on
their popularity, available documentation,
and frequency of use in React projects and
analysed based on their technical features
and practical application. Key aspects of
state management were analysed to assess
the applicability of these tools in various
application development scenarios. The
study also considers previous work on React
component hierarchy visualization, as an
effective way to understand how state flows
through an application and optimize its
management [5]. The tools were examined
from multiple perspectives, including how
their implementation affects application
performance, ease of use in terms of required
boilerplate code, handling complex states in
terms of partial updates and state mutability,
the complexity of managing asynchronous
operations, and the suitability of the tool
for different project sizes and levels of state
complexity. Recent research highlights

2. Methodology

3. Results

Table 1. provides an overview of the key
features of the four analysed tools for
managing state in React applications.
The features of each tool describe the
programming capabilities used for managing
the application’s global state. These listed
characteristics aim to achieve the main goal
of this study: simplifying the selection of

Acta Graphica, 2025. (1) Scientific article

29

the tool that best suits the project based on
technical requirements for state management.
As shown in Table 1, the tools differ in terms
of flexibility and adaptability to specific
application development scenarios.

State management tools differ in their
suitability depending on the size and
complexity of the application. Context API
provides a native solution suitable for small
and medium applications. It is lightweight
for implementations in smaller applications
and straightforward to use. However, in more
complex projects, a limitation of Context
API is the re-rendering of all components
consuming a specific context, which can
affect performance. Zustand is designed to be
lightweight and easy to use. Its flexibility and
scalability support make it an excellent choice
for projects of various sizes. The ability to
perform partial and mutable state updates,
middleware support, and performance

4. Conclusion

optimizations make it more suitable for
larger applications compared to Context API.
Redux and MobX are more appropriate for
large projects due to their robust handling
of complex states. In addition to handling

4.2. Ease of Implementation in
Projects
One critical factor in choosing a state
management tool is the complexity of its
implementation. Context API differs from

No. Feature Context API Zustand Redux + Middle-
ware MobX

1 Suitable for ap-
plication sizes Small and medium Small, medium,

large Medium and large Medium and large

2
Additional instal-
lation required in

React
No Yes Yes Yes

3 Flux architecture No No Yes No

4 Solution for con-
text loss No Yes Yes Yes

5
Automatic preven-

tion of Zombie
Child issue

No Yes Yes Yes

6
Partial state

updates (merged
state)

No Yes No Yes

7 Mutable state
updates No Yes No Yes

8
Handling asyn-
chronous opera-

tions
Manual Yes Middleware Manual

9 Boilerplate code
size Medium Smallest Largest Larger

10 Saving state to
local storage Manual Middleware

persist With redux-persist Manual

Table 1. Comparison of tools for managing global state

4.1. Suitability of Tools for Different
Application Sizes

state locally, applications that rely on
frequent interactions with a backend require
efficient state synchronization mechanisms.
Research has demonstrated that structured
synchronization frameworks improve data
consistency and reduce re-rendering issues
caused by inconsistent client-server states
[23]. Redux’s Flux architecture strictly
defines state management, which is beneficial
for collaborative team work on the same
application. MobX, being more flexible than
Redux, works well in large projects due to its
built-in reactivity and support for observable
variables.

Acta Graphica, 2025. (1) Scientific article

30

other tools in its simple implementation and
built-in support without requiring additional
installations. Zustand needs to be installed
and is similarly easy to integrate with minimal
boilerplate code, utilizing React hooks. Redux
and MobX, however, require installation and
significantly more setup code, which can be
justified for large teams and complex states.

Redux is the only tool among those analysed
that is based on the Flux architecture. Flux
enables unidirectional data flow, reducing the
likelihood of unexpected states and errors
during application operation. This predictable
architecture is particularly applicable to
applications with complex states and larger
team environments. MobX enforces rules and
methods for changing state but does not follow
the strict principles of the Flux architecture,
making it more flexible but potentially less
predictable. Context API and Zustand have
no direct connection to Flux architecture.

4.3. Flux Architecture

A drawback of Context API can be context
loss in React applications with different
rendering trees. This occurs when data shared
via Context API cannot be shared between
different renderers or separate component
trees. Context API operates within a single
rendering tree, meaning data accessible
through a Context Provider in one part of the
application will not automatically be available
to components in another tree. For example,
if an application uses different renderers, such
as React DOM for web and another renderer
(e.g., React Native, Canvas, React Three
Fiber), each has its own component tree.
Consequently, Context API cannot share data
across these trees. For this reason, Context
API is not suitable for sharing global state in
complex applications with multiple renderers.
In such cases, Zustand, Redux or MobX are
recommended as they allow state sharing
across multiple application trees or renderers,
ensuring state availability throughout the
application.

4.4. Addressing Context Loss

4.5. Preventing the Zombie Child
Problem
With React, the user interface cannot be
directly modified from the code and is updated
only by changing the state in response to user
input. Sometimes, it is necessary to update
the state of two components simultaneously.
To achieve this, the state is moved from the
components to their closest common parent
component and then passed down via props.
This process is known as “lifting state”.
Passing props from lifted state can become
challenging if a prop needs to be passed
through many components or if multiple
components require the same information
[12]. Figure 1 illustrates this scenario, where
props are passed through the hierarchy to
components that utilize the prop from the
lifted state.

4.6. Partial State Updates
Partial state updates refer to the ability
to update only a part of the state without
replacing the entire state object. This approach
can improve application performance, as
only components dependent on the changed
part of the state are updated rather than the
entire application. Since a new copy of the
entire state is not created, but only a part is
updated, memory usage is optimized, and
code handling becomes simpler especially in
applications that use complex state objects.
When using Context API, changes within a
context trigger re-rendering of all components
connected to it. Splitting state into multiple
contexts can achieve a similar effect, improving
performance by updating only components
using a specific context. However, splitting
state across multiple contexts can introduce
additional complexity in larger applications.
Redux does not directly support partial state
updates but achieves a similar effect through
reducer composition. State changes affect
only components subscribed to a specific state
slice. The Immer library, included with Redux
Toolkit, simplifies working with immutable
state by allowing code that appears to mutate

Acta Graphica, 2025. (1) Scientific article

31

state, while Redux Toolkit handles creating
new copies in the background. Zustand
and MobX support partial state updates.
Components are updated only when the part
of the state they are subscribed to changes,
improving application performance. This
enables flexible and optimized control over
complex states.

Mutable state updates involve directly
modifying the existing state object without
creating a new copy for every change. This
approach can simplify code and improve
performance by avoiding additional data
copying. Speed improvements can be
achieved, especially when many small state
changes occur, as mutable state reduces
memory allocations. However, immutability
has advantages in more complex systems, as it
ensures state consistency and predictability.
Zustand and MobX support mutable state
updates. They manage state outside React’s
render cycle and notify components when
updates occur, facilitating mutable state
updates without significant risk. Context API
and Redux require immutable state to ensure
consistency and predictability. However,
tools like Immer allow writing code as if state
is being updated mutably while maintaining
immutability in the background.

4.7. Mutable State Updates

Managing asynchronous code in JavaScript
ensures tasks run in the background without
blocking the application, enhancing user
interaction. However, asynchronous state
changes in React applications can cause
issues as updates are not immediate, and the
order of changes is not guaranteed. Tools like
Zustand, Redux, and MobX offer optimized
solutions for managing asynchronous
operations, whereas Context API requires
manual handling.

4.8. Handling Asynchronous Operations

Compared to Context API, Redux and MobX,
Zustand requires the least code for setup and

4.9. Boilerplate Code Size

working with a store. While Context API is
simpler than Redux and MobX, it typically
requires additional setup, such as creating
contexts and provider components, as well
as manually defining functions for state
updates, especially for more complex states
or asynchronous management. Redux has
the most boilerplate code due to its strict
structure, which involves creating actions,
reducers, configuring the store, and often
additional middleware (e.g., Redux Thunk
for asynchronous tasks). Although Redux
Toolkit reduces the amount of boilerplate,
it is still more complex than Zustand.
MobX, being flexible and reactive, requires
setting up “observable” objects, actions,
and sometimes decorators to track changes,
adding complexity compared to Zustand and
Context API.

4.10.	 Storing State in Local Storage
State persistence is particularly useful for
applications that need to maintain state
between sessions or in environments with
limited network access. Zustand has built-
in support for state persistence through its
persist middleware, which allows quick and
easy state preservation between page reloads
or reopening the application. It is configured
with minimal additional code and requires
no extra libraries. Context API, Redux, and
MobX lack built-in functionality for state
persistence, requiring manual handling.
In Redux, the redux-persist library can be
used for state persistence, offering a simple
integration with additional configuration.

5. Conclusion
This paper analysed and compared four
tools for managing global state in React
applications, highlighting their advantages
and disadvantages. The tools differ in their
approach to implementing global state
management, making them optimally suited
for projects of varying sizes and levels of
state complexity. Context API and Zustand
are suited for smaller projects, all tested tools
are optimized for medium-sized applications,

Acta Graphica, 2025. (1) Scientific article

32

while Zustand, Redux and MobX are well-
suited for scalability and managing complex
states in larger applications.
Context API stands out for its simplicity of
implementation, as it is a built-in feature
of the core React library. The other tools
require installation within the project.
However, Context API can become limiting
in complex applications due to performance
issues, context loss, or the lack of built-in
solutions for preventing the Zombie Child
problem. The other tested tools provide
built-in solutions for these issues. Zustand
and MobX support partial and mutable state
updates. Zustand further requires minimal
boilerplate code, making it flexible and easy
to use. Additionally, it offers a significant
advantage over the other tools with its built-
in support for managing asynchronous code
and a simplified method for persisting state
to local storage. Redux, thanks to its Flux
architecture and rich ecosystem, provides the
best support for teams working on large and
complex projects. Solving certain problems
with Redux often requires additional tools
and middleware, and it has the largest amount
of boilerplate code among the tested tools.
MobX offers an alternative to Redux for
applications that require high flexibility in
state management, with automatic reactivity
and slightly less boilerplate code. Persisting
state to local storage is simplified in Redux
and Zustand with the use of additional tools.
The hypothesis has been confirmed, as
the analysis successfully identified the
unique strengths and limitations of each
state management tool, providing clear
recommendations for their optimal use based
on the size, complexity, and requirements
of React applications. This study provides
guidelines for choosing a state management
tool for React applications based on the size
and complexity of the project as well as its
technical requirements. Future research could
include performance testing on large-scale
projects and an analysis of less commonly
used state management tools.

Literature
[1] HubSpot. What is React.js? Uses,
Examples, & More. HubSpot [Internet]. 2024
[Accessed July 2, 2024]. Available from:
https://blog.hubspot.com/website/react-js.

[2] Gackenheimer C. Introduction to React.
Apress; 2015.

[3] Ferreira F., Borges H.S., Valente MT.
Refactoring React-based Web Apps. J Syst
Softw. 2024;192:111362.

[4] BairesDev. React Single Page Application.
BairesDev [Internet]. 2024 [Accessed July 2,
2024]. Available from: https://www.bairesdev.
com/blog/react-spa-single-page-application/.

[5] Boersma S., Lungu M. React-bratus:
Visualising React Component Hierarchies.
In: VISSOFT 2021 - Working Conference on
Software Visualization. IEEE; 2021. p. 130-
134.

[6] GeeksforGeeks. ReactJS Virtual DOM.
GeeksforGeeks [Internet]. 2023 [Accessed
July 2, 2024]. Available from: https://www.
geeksforgeeks.org/reactjs-virtual-dom/.

[7] Maratkar PS, Pratibha A. React JS–An
Emerging Frontend JavaScript Library. Iconic
Res Eng J. 2021;12(4):99-102.

[8] Shaik V. Understanding the Concept
of “State” in React. Medium [Internet].
2024 [Accessed July 2, 2024]. Available
from: https://medium.com/@vaheedsk36/
understanding-the-concept-of-state-in-react-
4f3461a1c7c4.

[9] Eygi C. React.js for Beginners — Props
and State Explained. freeCodeCamp
[Internet]. 2024 [Accessed July 2, 2024].
Available from: https://www.freecodecamp.
org/news/react-js-for-beginners-props-state-
explained/.

Acta Graphica, 2025. (1) Scientific article

33

[10] GeeksforGeeks. Differences between
Functional Components and Class
Components. GeeksforGeeks [Internet]. 2023
[Accessed July 3, 2024]. Available from:
https://www.geeksforgeeks.org/differences-
between-functional-components-and-class-
components/.

[11] Ferreira F, Valente M.T. Detecting Code
Smells in React-based Web Apps. Inf Softw
Technol. 2023;155.

[12] React Documentation. Managing State.
React [Internet]. 2024 [Accessed July 3,
2024]. Available from: https://react.dev/
learn/managing-state.

[13] Matéu.sh. React Context API Explained
with Examples. freeCodeCamp [Internet].
2024 [Accessed October 28, 2024]. Available
from: https://www.freecodecamp.org/news/
react-context-api-explained-with-examples/.

[14] Thanh L. Comparison of State
Management Solutions between Context
API and Redux Hook in ReactJS. Metropolia
University of Applied Sciences, Bachelor’s
Thesis; 2021.

[15] Onix. Zustand State Management for
React. Medium [Internet]. 2022 [Accessed
July 11, 2024]. Available from: https://
medium.com/@onix_react/zustand-state-
management-for-react-feef64b2555e.

[16] Anujkumarsinh D., Apeksha J., Pradeep
K.S. Application State Management (ASM)
in the Modern Web and Mobile Applications:
A Comprehensive Review. arXiv Preprint
arXiv:2407.19318; 2024.

[17] Kumah E.F. How to manage state in a
React app using Redux. DEV Community
[Internet]. 2023 [Accessed November
8, 2024]. Available from: https://dev.to/
efkumah/how-to-manage-state-in-a-react-
app-using-redux-5pc.

[18] Banks A., Porcello E. Learning React:
Functional Web Development with React and
Redux. O’Reilly Media; 2017.

[19] Maurya H. MobX with React: A
Comprehensive Guide. Medium [Internet].
2023 [Accessed November 8, 2024].
Available from: https://harish-git.medium.
com/mobx-with-react-a-comprehensive-
guide-23598bfa54f2.

[20] MobX Documentation. Ten-minute
Introduction to MobX and React. MobX
[Internet]. 2024 [Accessed November 13,
2024]. Available from: https://mobx.js.org/
getting-started.

[21] Pavan P., Weststrate M. MobX Quick
Start Guide: Supercharge the Client State
in Your React Apps with MobX. Packt
Publishing Ltd; 2018.

[22] Lu R. How to Improve State Management
in React with MobX. Whitespectre [Internet].
2024 [Accessed July 3, 2024]. Available
from: https://medium.com/whitespectre/
how-to-improve-state-management-in-react-
with-mobx-568808ff86a4.

[23] Tagdiwala V., Bharoliya A., Aibin M.
Robust Client and Server State Synchronisation
Framework for React Applications: react-
state-sync. In: Proc IEEE Can Conf Electr
Comput Eng (CCECE). 2023. p. 1-6.

[24] React-Redux Documentation. Stale
Props and Zombie Children. React-Redux
[Internet]. 2024 [Accessed November 7,
2024]. Available from: https://react-redux.
js.org/api/hooks#stale-props-and-zombie-
children.

Acta Graphica, 2025. (1) Scientific article

